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Abstract

Mixed convection boundary layer flows of non-Newtonian fluids over the wavy surfaces are studied by the coordinate trans-

formation and the cubic spline collocation numerical method. The effects of the wavy geometry, the buoyancy parameter and the

generalized Prandtl number for pseudoplastic fluids, Newtonian fluids and dilatant fluids on the skin-friction coefficient, local and

mean Nusselt numbers have been graphically studied. Results show that both higher generalized Prandtl numbers and buoyancy

parameters are seen to enhance the influence of wavy surfaces on the local Nusselt number, irrespective of whether the fluids are

Newtonian fluids or non-Newtonian fluids. Moreover, the irregular surfaces have higher total heat flux than that of corresponding

flats plate for any fluid.

� 2002 Published by Elsevier Science Inc.

Keywords: Mixed convection; Non-Newtonian fluids; Wavy surface; Cubic spline

1. Introduction

In recent years, non-Newtonian fluids have received

much attention because many practical applications are

not in traditional Newtonian fluids. Most of the previous

studies have focused mainly on the heat transfer char-

acteristics for non-Newtonian fluids flow over flat plates

(see, for example, Lloyd and Sparrow, 1970, Huang and

Chen, 1984, Wang, 1995, Hady, 1995, and the references
cited therein). However, irregular surfaces frequently

occur in the process of manufacture even though the

complex boundary conditions or external flow fields are

difficult to deal with. Moreover, surfaces are sometimes

intentionally roughened to enhance heat transfer for the

presence of rough surfaces disturbs the flow and alters

the heat transfer rate. In the following, some previous

works done on wavy surfaces will be discussed.
The natural convection heat transfer along vertical

wavy surfaces (i.e. sinusoidal surfaces) has been studied

by Moulic and Yao (1989a,b) and Rees and Pop (1994)

for Newtonian fluids; Chiu and Chou (1994) for mi-

cropolar fluids; Kim (1997) and Kumari et al. (1997) for
non-Newtonian fluids. In general, it has been found that

the local heat transfer rate varies periodically along the

wavy surface, with a frequency equal to twice the fre-

quency of the wavy surface. On the other hand, these

investigations into mixed convection of Newtonian

fluids along a vertical wavy surface are carried out by

Moulic and Yao (1989a,b). Numerical results show that

the axial distribution of the local Nusselt number shows
a mixture of two harmonics. The amplitude of the first

harmonic is proportional to that of the wavy surface,

and the natural-convection component is the second

harmonic with a frequency twice that of the wavy sur-

face. Recently, Pop et al. (1996) investigate the forced

convection boundary layer flow of power-law fluids over

wavy surfaces. They find that the skin-friction coefficient

decreases with the power-law index increased. Further-
more, the rise and fall of the skin-friction coefficient is

seen to follow the change of the surface contour.

The above literature survey shows that the combined

free and forced convection of non-Newtonian fluids

along irregular surfaces in laminar boundary layer flow

has not been studied so far. In this study, a simple co-

ordinate transformation is employed to transform a

complex wavy surface to a flat plate, and the cubic spline
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collocation method is then used to solve the flow patterns

and heat transfer characteristics. The effects of the wavy

geometry, the power-law viscosity index, the Richardson

number and the generalized Prandtl number on the skin-

friction coefficient and the Nusselt number have been

examined in detail. These results are also compared with

the corresponding flow in Newtonian fluids.

2. Mathematical formulation

Consider steady laminar boundary layer flow of non-

Newtonian fluids past semi-infinite symmetric body with

a wavy surface at uniform wall temperature. The phys-

ical model and coordinate system are shown in Fig. 1,

where the axis of symmetry is aligned with the oncoming
uniform stream. In particular, we assume that the wavy

surface is described by Sð�xxÞ ¼ �aa sin2ðp�xx=LÞ, where �aa
is the amplitude of the wavy surface. By employing

the Boussinesq approximation and making use of the

power-law viscosity model, the governing equations for

mixed convection flow under consideration can be

written in the following form:
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where K is the parameter of power-law viscosity model.
�JJ is the second invariant of the strain-rate tensor and is
given by

�JJ ¼ 2
o�uu
o�xx

 !28<
: þ 2 o�vv

o�yy

 !2
þ o�uu

o�yy

 
þ o�vv
o�xx

!29=
;

ðn�1Þ=2

ð5Þ

The associated boundary conditions of Eqs. (1)–(4)

are

Nomenclature

a amplitude of wavy surface

Cf skin-friction coefficient

Cp specific heat of the fluid at constant pressure

g gravitational acceleration

Gr generalized Grashof number

h heat transfer coefficient

J second invariant of the strain-rate tensor

K fluid consistency index for power-law fluid
Kf thermal conductivity

L characteristic length

Nux local Nusselt number

Num mean Nusselt number

n power-law viscosity index

p pressure

Pr generalized Prandtl number

Re generalized Reynolds number
Ri Richardson number

S surface geometry function

Uw x component of the velocity of the inviscid

flow, evaluated at the wavy surface

T temperature

u, v x and y components of velocity, respectively

x, y coordinates

Greeks

a wavy amplitude–wavelength ratio

r distance measured along the surface from the
leading edge

h dimensionless temperature

q density of fluid

g coordinate

w stream function

Subscripts

w wall surface

1 free stream condition

Superscripts

� dimensional variables
�, ^ dimensionless quantities
0 derivative with respect to x

Fig. 1. Physical model and coordinate system.
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(a) On the wavy surface

T ¼ Tw; �uu ¼ �vv ¼ 0 ð6Þ
(b) Matching with the free stream

T ! T1; �uu ! Uwð�xxÞ; �pp ! �pp1ð�xxÞ ð7Þ
Here Uwð�xxÞ is the �xx component of the inviscid velocity at
the free surface �yy ¼ �SSð�xxÞ.
New, the following dimensionless variables are de-

fined as

~xx ¼ �xx
L

~yy ¼ �yy
L

a ¼ �aa
L

S ¼
�SS
L

~uu ¼ �uu
U1

~vv ¼ �vv
U1

h ¼ T � T1
Tw � T1

Uw ¼ �uuw
U1

~pp ¼ �pp
qU 2

1

Re ¼ qU 2�n
1 Ln

K
Gr ¼ gbðTw � T1Þq2L1þ2nU 2ð1�nÞ

1
K2

Ri ¼ Gr
Re2

Pr ¼ CpK2=ðnþ1Þ

Kf

qU 3
1

L

� �ðn�1Þ=ðnþ1Þ

ð8Þ

Substituting (8) into Eqs. (1)–(5), we obtain following

dimensionless equations:
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where

~JJ ¼ 2
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The next step is to transform the irregular wavy

surface into a flat surface by using the following trans-

formation

x̂x ¼ ~xx; ŷy ¼ ð~yy � SÞRe1=ðnþ1Þ

ûu ¼ ~uu; v̂v ¼ ð~vv� S0~uuÞRe1=ðnþ1Þ; p̂p ¼ ~pp � ~pp1
ð14Þ

By substituting Eq. (14) into Eqs. (9)–(13) and under

the assumption of a larger generalized Reynolds number

(i.e. boundary layer approximation), the governing

equations are transformed from an irregular wavy sur-
face into a flat surface. Thus, the transformed boundary

layer equations can be given as
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oŷy

¼ 1

Pr
ð1þ S02Þ o

2h
oŷy2
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Eq. (17) indicates that the pressure gradient along

y-direction is OðRe�1=ðnþ1ÞÞ. Therefore, from the inviscid
flow solution, we can express the pressure gradient along

x-direction as

op̂p
ox̂x

¼ �ð1þ S02ÞUwU 0
w þ S0S00U 2

w ð19Þ

The transformed momentum Eqs. (16) and (17) can

be combined into one equation by eliminating the

pressure gradient op̂p=oŷy, and so, we have

ûu
oûu
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oûu
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1þ S02
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oûu
oŷy
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@
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In order to remove the singularity at x ¼ 0, the
boundary layer equations are further transformed by

means of the following variables:

x ¼ x̂x; y ¼ ŷy
2x̂x
Uw

 !�1=ðnþ1Þ

u ¼ ûu
Uw

; v ¼ v̂v
2x̂x
Uw

 !1=ðnþ1Þ ð21Þ

Substituting (21) into Eqs. (15), (20) and (18) yields

2x
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� 2

nþ 1 y 1

�
� x

U 0
w

Uw

�
ou
oy

þ 2x
Uw

� �ðn�1Þ=ðnþ1Þ
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oy

þ 2xU
0
w

Uw
u ¼ 0 ð22Þ

C.-C. Wang, C.-K. Chen / Int. J. Heat and Fluid Flow 23 (2002) 831–839 833



2xu
ou
ox

þ 2x
Uw

� �ðn�1Þ=ðnþ1Þ

v

"
� 2yu
1þ n

1

�
� x

U 0
w

Uw

�#
ou
oy

þ 2xðu2 � 1Þ S0S00

1þ S02

�
þ U 0

w

Uw

�
¼ 2x

U 2
wð1þ S02Þ

Rih

þ ð1þ S02ÞnUn�1
w

o

oy
ou
oy

ou
oy

����
����
n�1

 !
ð23Þ

2xu
oh
ox

þ 2x
Uw

� �ðn�1Þ=ðnþ1Þ

v

"
� 2yu
1þ n

1

�
� x

U 0
w

Uw

�#
oh
oy

¼ 1þ S02

Pr
2x
Uw

� �ðn�1Þ=ðnþ1Þ
o2h
oy2

ð24Þ

The corresponding boundary conditions are

h ¼ 1; u ¼ v ¼ 0 as y ¼ 0 ð25Þ

h ! 0; u ! 1 as y ! 1 ð26Þ
The last step is to obtain the surface velocity UwðxÞ (a

necessary boundary condition). In studies of Moulic and

Yao (1989a,b) and Pop et al. (1996), the velocity of the

inviscid flow in the wavy surface is obtained by ex-

pressing the stream function as a two-term series, which

have good results for small amplitude of wavy surface.

In the present study, in order to give more accurate

solution for larger wavy amplitude–wavelength ratio,
the transformed coordinate and the numerical method

(SOR) have been used to solve the potential flow and

to determine the surface velocity Uw. Therefore, the
streamline equation and the transformed coordinate can

be written as following:

o2w
o~xx2

þ o2w
o~yy2

¼ 0 ð27Þ

x ¼ ~xx; g ¼ ~yy � ~SSð~xxÞ ð28Þ
Substituting Eq. (28) into Eq. (27), we can get the

transformed equation and the velocity UwðxÞ, i.e.
o2w
ox2

� S00 ow
og

� 2S0 o
2w

oxog
þ ð1þ S02Þ o

2w
og2

¼ 0 ð29Þ

and

Uw ¼ ow
og

����
g¼0

ð30Þ

The streamlines for a ¼ 0:3 and the axial distribution
of the inviscid surface velocity UwðxÞ and the pressure
gradient (see Eq. (19)) are shown in Figs. 2 and 3, re-

spectively. The inviscid surface velocity shows the peri-

odical variation along the wavy surface with a cycle

equals that of the surface. The flow accelerates along the

portion of the surface from trough to crest, where the

slope S0 is positive and the pressure gradient is negative;
while it decelerates along the portion of the surface from
crest to trough, where the slope S0 is negative and the

pressure gradient is positive. Moreover, as the wavy

amplitude–wavelength ratio increases, the velocity at the

crest is seen to increase steadily; while at the trough the

velocity is seen to decrease leisurely and then approaches

zero.

Since the flow and the temperature fields have been

obtained, two important quantities can be calculated as

presented below. The local Nusselt number is defined as

Nu�xx ¼
h�xx�xx
Kf

ð31Þ

Using Newton’s law of cooling and Fourier’s law in Eq.

(31), the local Nusselt number can be expressed as

4

Gr�xx

� �1=2ðnþ1Þ
Nu�xx ¼ � 1

Rix

� �1=2ðnþ1Þ
U 1=ðnþ1Þ
w

� ð1þ S02Þ1=2 oh
oy

����
y¼0

ð32Þ

The skin-friction coefficient Cf is defined as

Cf ¼
2sw
qU 2

1
ð33Þ

Then the quantity of ð2Re�xxÞ1=ðnþ1ÞCf can be expressed as

ð2Re�xxÞ1=ðnþ1ÞCf ¼ 22=ðnþ1ÞUnðnþ2Þ=ðnþ1Þ
w ð1þ S02Þn ou

oy

� �n

ð34Þ

Fig. 2. Streamlines of flow for a ¼ 0:3.

Fig. 3. Axial distribution of inviscid surface velocity and pressure

gradient.
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When Ri 6¼ 0 the skin-friction coefficient can also be
expressed as

Ri�1
Gr

2ðnþ 1Þx

� �1=2ðnþ1Þ
Cf ¼

nþ 1
2

� ��1=2ðnþ1Þ

� 1

Rix

� �ð2nþ1Þ=2ðnþ1Þ

Unðnþ2Þ=ðnþ1Þ
w ð1þ S02Þn ou

oy

� �n

ð35Þ

3. Numerical method

The coupled Eqs. (22)–(24) and associated boundary

conditions were solved by using the cubic spline collo-

cation procedure (Rubin and Graves, 1975; Wang and

Kahawita, 1983). Using the spline formulation and the
false transient technique, we can write the governing

differential equations in the following form:

uzþ1
i;j ¼ Fi;j þ Gi;j

ou
oy

� �zþ1

i;j

þ Si;j
o2u
oy2

� �zþ1

i;j

ð36Þ

where i and j refer to the computational nodes, z is the

time step, u represents u or h. Fi;j, Gi;j and Si;j are the
known coefficients evaluated at the previous time step.

Furthermore, by using cubic spline collocation relations

described in Rubin and Graves (1975), Eq. (36) may be

written in tri-diagonal form as

Ai;jX
nþ1
i;j þ Bi;jX

nþ1
i;j þ Ci;jX

nþ1
i;j ¼ Di;j ð37Þ

where X represents u or h, or its first and second de-
rivatives. The Thomas algorithm is then employed to

solve Eq. (37).

Since the singularity at x ¼ 0 has been removed by the
scaling, the computation starts from x ¼ 0, and then
marches downstream. At every x-station, the iteration

process continues until the convergence criterion is
achieved

Xnþ1
i;j � Xn

i;j

Xnþ1
i;j

�����
�����6 1� 10�5 ð38Þ

4. Results and discussion

Since the spline alternating-direction implicit method

can evaluate the spatial derivative terms directly without
any finite difference discretization and the requirement

of a uniform mesh is not necessary. Therefore, the pre-

sent work employs 150� 50 non-uniform grids with

smaller spacing mesh points near the fluid–solid

boundary at y-direction and near the leading edge at

x-direction. The independence of results from mesh

densities has been successfully checked by repeated cal-

culations with finer meshes. In order to verify the nu-
merical accuracy of solutions, numerical results have

been shown in Table 1 for the case of a flat plate (a ¼ 0)
immersed in a Newtonian fluid (i.e. n ¼ 1:0) with dif-
ferent Prandtl numbers and boundary parameters

Grx=Re2x . In all cases, the local Nusselt number

Re�1=2�xx Nu�xx is found to be in excellent agreement with
those of Lloyd and Sparrow (1970) and Wang (1995).

Table 2 also compares the local skin-friction coefficient
ð2Re�xxÞ1=ðnþ1ÞCf for forced convection flow along a flat

plate in non-Newtonian fluids. It is seen that the data

calculated by Eq. (34) has little discrepancy compared

with that of Huang and Chen (1984) for n ¼ 0:5 and 1.5.
However, the data set matches very well with Wang

(1995) for any power-law viscosity index.

Numerical results have been obtained for the surface

described by Sð�xxÞ ¼ �aa sin2ðp�xx=LÞ, or SðxÞ ¼ a sin2ðpxÞ,
for wavy amplitude–wavelength ratios a ¼ 0:0 (flat

plate), 0.1 and 0.2. The power-law model is used for

non-Newtonian fluids with exponent n < 1 for pseudo-
plastic fluids; n ¼ 1 for Newtonian fluids; and n > 1 for
dilatant fluids. The influence of governing physical

parameters such as generalized Prandtl number and

buoyancy parameter (i.e. Richardson number, Ri) is

explored for a wide range. Figs. 4 and 5 show the three-
dimensional plots of axial velocity component u for

n ¼ 0:5 (pseudoplastic fluids) and n ¼ 1:5 (dilatant flu-
ids) at a ¼ 0:2, Ri ¼ 10 and Pr ¼ 1, respectively. Clearly,
forced convection is the dominant mode of heat transfer

near the leading edge, while further downstream, free

convection becomes the dominant mode of heat transfer

due to the increase of buoyancy. It is also seen that the

hydrodynamic boundary layer thicknesses for n ¼ 0:5 is

Table 1

Comparison of Re�1=2�xx Nu�xx for mixed convection of Newtonian fluids (i.e. n ¼ 1) along a vertical flat plate
Grx=Re2x Pr ¼ 0:72 Pr ¼ 100

Lloyd and

Sparrow (1970)

Wang (1995) Present method Lloyd and

Sparrow (1970)

Wang (1995) Present method

0.00 0.2956 0.29550 0.2957 1.572 1.5708 1.5732

0.04 0.3044 0.29801 0.3050 1.585 1.5891 1.5899

0.10 0.3158 0.30502 0.3171 1.606 1.6152 1.6159

0.40 0.3561 0.36097 0.3600 1.691 1.7273 1.7269

1.00 0.4058 0.41441 0.4128 1.826 1.8959 1.8950
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smaller than that for n ¼ 1:5 ever if both hydrodynamic
boundary layer thickness reduce with x.

Figs. 6 and 7 show the axial distributions of the local

Nusselt number ð4=Gr�xxÞ1=2ðnþ1ÞNu�xx and the local skin-
fiction coefficient Ri�1ðGr=2ðnþ 1ÞxÞ1=2ðnþ1ÞCf for a ¼
0:2, Ri ¼ 10 and Pr ¼ 1, including results of the limiting
case of a flat plate (a ! 0) for comparison. In Fig. 6, It is

observed that the dilatant fluids (n ¼ 1:5) has larger local
Nusselt number than that of the Newtonian fluids
(n ¼ 1) and the pseudoplastic fluids (n ¼ 0:5) near the
leading edge of the plate; while it gradually decreases

downstream and becomes the minimum. Comparatively,

the pseudoplastic fluid decreases quickly near the leading

edge but gradually increases downstream. Note that the

skin-friction coefficient has the reverse phenomenon as

shown in Fig. 7. These results may be explained as fol-

lows. As x increases, the free convection effect is cumu-
lative and makes the flow accelerate, thereby causing a

change of shear stress in non-Newtonian fluids. In Figs. 6

and 7, we can also observe that the curves of a ¼ 0:2
show a frequency equals to that of the wavy surface for

any fluid. It should be noted that the peaks of the local

Nusselt number and the skin-friction coefficient occur

Table 2

Comparison of ð2Re�xxÞ1=ðnþ1ÞCf for forced convection of non-Newtonian fluids along a flat plate
n

0.5 0.8 1.0 1.2 1.5

Huang and Chen (1984) 1.8439 1.1916 0.9390 0.76191 0.5814

Wang (1995) 1.8290 1.1911 0.9390 0.76137 0.5808

Present method 1.8288 1.1899 0.9389 0.76176 0.5802

Fig. 6. Axial distribution of ð4=Gr�xxÞ1=2ðnþ1ÞNu�xx for various values of
power-law viscosity index with a ¼ 0 and 0.2, Ri ¼ 10 and Pr ¼ 1.

Fig. 7. Axial distribution of Ri�1ðGr=2ðnþ 1ÞxÞ1=2ðnþ1ÞCf for various
values of power-law viscosity index with a ¼ 0 and 0.2, Ri ¼ 10 and
Pr ¼ 1.

Fig. 5. Axial velocity distribution for n ¼ 1:5, a ¼ 0:2, Ri ¼ 10 and
Pr ¼ 1.

Fig. 4. Axial velocity distribution for n ¼ 0:5, a ¼ 0:2, Ri ¼ 10 and
Pr ¼ 1.
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near the peaks of the wavy surface, where the inviscid

free-stream velocity is maximum.

Figs. 8 and 9 also show variations of the local Nusselt

number and the local skin-fiction coefficient for a ¼ 0:2,
Ri ¼ 50 and Pr ¼ 1 and 10. In all cases, the presence of
the second harmonic can be found in the curve for the

Richardson number equals 50. This outcome is due to the

lower axial velocity within the troughs of the wavy sur-

face that exhibits higher temperature and greater sensi-

tivity to the buoyancy force effect, thereby causing a

larger change in velocity gradients at the wall. On the

other hand, the wavy surface is seen to have a larger in-

fluence on the Nusselt number for higher generalized

Prandtl number. Moreover, an increase in generalized

Prandtl numbers decreases the quantity of skin-friction

coefficient and increases that of heat transfer rate for any
fluid.

The second harmonics of the local heat transfer rate

and the skin-friction coefficient are seen more clearly

near the troughs of the wavy surface in Figs. 10 and 11,

in which the axial distributions of the local Nusselt

number and the skin-friction coefficient are plotted for

Ri ¼ 500. In another word, the wavelengths of the local
Nusselt number and the skin-friction coefficient are only
half that of the wavy surface for larger Richardson

numbers. This result is similar to that of free convection

(see Kumari et al., 1997) except near the leading edge.

Figs. 10 and 11 also observe that as wavy amplitude–

wavelength ratios increase, the average quantities of

Nusselt number and skin-friction coefficient decrease,

even if both amplitudes increase for any fluid. For a

given value of wavy amplitude–wavelength ratio, fur-
thermore, the amplitude of skin-friction coefficient is

seen to increase with the power-law viscosity index. But,

this result is unobvious for the local Nusselt number.

The mean Nusselt number can be obtained by aver-

aging the heat flux over the heat transfer area, which is

based on the total area of each wave and not on pro-

jected area, from the leading edge to rðxÞ, i.e.,

Num ¼ hm�rrð�xxÞ
Kf

ð39Þ

where

hm ¼ �1
ðTw � T1Þ�rr

Z �xx

0

Kf
oT
on
d�rr ð40Þ

Fig. 8. Axial distribution of ð4=Gr�xxÞ1=2ðnþ1ÞNu�xx for various values of
power-law viscosity index and generalized Prandtl number with

a ¼ 0:2, Ri ¼ 50.

Fig. 9. Axial distribution of Ri�1ðGr=2ðnþ 1ÞxÞ1=2ðnþ1ÞCf for various
values of power-law viscosity index and generalized Prandtl number

with a ¼ 0:2, Ri ¼ 50.

Fig. 10. Axial distribution of ð4=Gr�xxÞ1=2ðnþ1ÞNu�xx for various values of
power-law viscosity index and wavy amplitude–wavelength ratio with

Ri ¼ 500, Pr ¼ 1:0.
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�rrð�xxÞ ¼
Z �xx

0

ð1þ �SS02Þ1=2 d�xx ð41Þ

Then, the variation of ð4=Gr�xxÞ1=2ðnþ1ÞNum with x, given
by

4

Gr�xx

� �1=2ðnþ1Þ
Num ¼ � 1

Rix

� �1=2ðnþ1Þ
2

xn

� �1=ðnþ1Þ

�
Z x

0

Uw
2x

� �1=ðnþ1Þ
1
�

þ S02
� oh
oy

����
y¼0
dx

ð42Þ

are plotted in Figs. 12–14 for Ri ¼ 10, 50 and 500, re-
spectively. Compare the mean Nusselt number with the

corresponding local Nusselt number (see Figs. 6, 8 and

10), it appears that the oscillations of ð4=Gr�xxÞ1=4Num for
the wavy plate show the same periodic behavior and

have smaller amplitudes. Although the local Nusselt

numbers of the wavy plate shown in Figs. 6 and 8 are
almost everywhere smaller than that of the flat plate, the

mean Nusselt number shown in Figs. 12 and 14 are

uniformly larger than that of the corresponding flat

plate. This indicates that the wavy plate has higher heat

transfer rates than the corresponding flat plate for any

fluid, which is due to the wavy plate has larger heat
Fig. 12. Axial distribution of ð4=Gr�xxÞ1=2ðnþ1ÞNum for various values of
power-law viscosity index with a ¼ 0 and 0.2, Ri ¼ 10 and Pr ¼ 1.

Fig. 13. Axial distribution of ð4=Gr�xxÞ1=2ðnþ1ÞNum for various values of
power-law viscosity index and generalized Prandtl number with

a ¼ 0:2, Ri ¼ 50.

Fig. 11. Axial distribution of Ri�1ðGr=2ðnþ 1ÞxÞ1=2ðnþ1ÞCf for various
values of power-law viscosity index and wavy amplitude–wavelength

ratio with Ri ¼ 500, Pr ¼ 1:0.

Fig. 14. Axial distribution of ð4=Gr�xxÞ1=2ðnþ1ÞNum for various values of
power-law viscosity index and wavy amplitude–wavelength ratio with

Ri ¼ 500, Pr ¼ 1:0.
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transfer areas to raise the average heat transfer rate.

Moreover, the increase in wavy amplitude–wavelength

ratio is seen to enhance the mean heat transfer rate for

difference fluids. On the other hand, the effects of gen-
eralized Prandtl number and power-law viscosity index

in mean Nusselt number are also shown in Fig. 13.

Clearly, the higher Prandtl number is seen to have the

higher mean Nusselt number. Also, as power-law vis-

cosity index increases, the mean Nusselt number in-

creases near the leading edge and decreases far

downstream of the leading edge. Note that the rate of

decrease is more obvious for higher Prandtl numbers.

5. Conclusions

The analysis of laminar mixed convection heat

transfer between a vertical wavy plate and non-Newto-

nian fluids has been presented. A square of sinusoid of

surface is used to elucidate the effects of wavy ampli-
tude–wavelength ratio, generalized Prandtl number and

Richardson number for different fluids on the local

Nusselt number, the mean Nusselt number and the skin-

friction coefficient.

From the present results, it has been found that the

behavior for non-Newtonian fluids near the leading edge

of the wavy plate and downstream is quite different, i.e.,

the local and mean Nusselt numbers increase near the
leading edge but decrease downstream with the power-

law viscosity index. And this result is opposite for skin-

friction coefficient. The wavy surface disturbs the flow

and alters the heat transfer rate, thus makes the varia-

tions of the Nusselt number and the skin-friction coef-

ficient on axial show a mixture of two harmonics for any

fluid. The total heat transfer rate of the wavy surface is

higher than that of the flat plate since the wavy surface
has larger heat transfer areas. Also, both higher gener-

alized Prandtl number and wavy amplitude wavelength

ratio tend to enhance the total heat transfer for a given

value of Richardson number.
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